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LETTER TO THE EDITOR

Crystal structure effects upon the mass of an exciton

J-P Gallinar
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Venezuela

Received 11 January 1993

Abstract. The Mattis—-Gallinar effect predicts that the scalar mass of an exciton depends upon
its intesnal kinetic energy, and that the exciton mass may be larger than the sum of the masses
of the electron and the hole. | generalize this effect to the tensorial case of a crystal structure
which i not necessarily cubic. By assuming that the electron and hole share the same band
structure, ! find that

M,;‘ = —(1/4)§R,-le€g

where Kp represents an internal excitonic kinetic energy associated to the vector Bt of the
crystal lagtice, and M,}' is the ijth component of the inverse mass tensor of the exciton. Thus,
if the exciton becomes localized in the sense that Kg — 0, the mass tensor M may become
arbitrarily large.

According to the Mattis—Gallinar effect the scalar effective mass M of an exciton in a cubic
crystal is given by [1-5]

M = (me + m) /(1 — (K/W)) 1))

where me + my is the sum of the masses of the electron and hole, K the internal kinetic
energy of the exciton and W the average of the electron and hole bandwidths.

Experimental verification of formula (1) was given by Cafolla, Schnatterly and Tarrio
{6] from transmission electron-energy-loss measurements, for the cubic semiconductors NaF
and CuCl, and more recently [7] for solid (cubic) krypton.

Although well established [6-8] for cubic crystals, the result] embodied in equation (1)
has not been generalized to other lattice structures [8]. I is the purpose of this contribution
to do so,

. Thus, in the following, I will show that equation (1) can be extended in a non-trivial—
yet very simple—manner to non-cubic structures, provided one makes the simplifying
assumption that the electron and hole share the same band structurei.

In effect, consider the reasonably general {3] lattice excitonic Hamiltonian H, consisting
of kinetic energy for the electron and the hole, plus potential attractive energy V(R), of the
form {3]

H = E.(~iA.) + En(~iAn) + V(R, — Ry)
T Namely a theoretical interpolation between the extreme cases of the Mott-Wannier and the Frenkel-type excitons.

1 The band structure being otherwise quite general, and not necessarily restricted to nearest-neighbour ‘hops’ as
for equation (1),
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with the kinetic energy

E{ke) =Y  C(Rye™? 2
R

for the electron of wavevector k., = —iA,; and kinetic energy

En(kn) = Y V(R)e*R @)
R

for the hole having wavevector &y, = —iA;. Associated to the lattice vector R, C(R) and
V() represent the ‘hopping’ matrix elements for the electron and hole, respectively.
The two-particle state of the exciton |} can be written as [2]

¥) = ) ¥(Re. Ro)iRe, Ri) 3)
Re.Bn

where the | R,, R) denotes the orthonormal basis states in which the electron is localized at
lattice site R,, and the hole at site By, and ¥ (R,., B;) is the comesponding wavefunction.
By making the centre-of-mass transformation, one writes [2]

‘;’(Rc- Rh) — e—i(k/Z)-(Rd-Rh)F(Re _- Rh) 4)

where k is the wavevector of the centre of mass of the exciton, and F(R. — Ry) is some

function of the relative coordinate R, — Ry only. Substitution of equations (3) and (4} into
the eigenvalue equation of the exciton

H|y) = Ely) (5)

leads, after some manipulations, to the following difference equation for the function

F(R. - Ry) = F(r); namely

Z(eitkfz).nc(_ R) -+ e-iE/DRy R)) F(r+ R) = (E(k — V(1)) F(r). (6)
R

To make further progress, I will now assume that the electron and hole share the same
band structure, in the sense that C(—R) = V(R) in equation (6), or, equivalently, that
Ee(ke) = En{—Fk,) in equation (2). With this simplifying assumption, equation (6) becomes

23 VR cos(k ;R) F(r+ R) = (E(k) - V) F(). M
R

From equation (7) one can now follow a line of reasoning similar (but somewhat simpler)
to that used in previous references {1-3] to obtain the effective mass of the exciton.

In effect, introducing ‘coupling’ real parameters A(R), such that each V(R) is
renomalized to A(R)V (R), the energy eigenvalue E(k) of the exciton, considered as a
function of the A(R) parameters, will obey an obvious scaling relationship that follows
from equation (7), namely,

E(kA(R),MR), ..) = E(0,A(Ry), i{R2), -..) @)
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provided the renommalised AMR) are given by

A(R) = MR) cos(k - R/2).
Then it is a simple matter to obtain the exciton mass by expanding the right-hand side of

equation (8) in powers of & (up to k2). If {A(J)} denotes the set of the A(R)s, one has by
Taylot’s expansion of all functions

.l
E(k, [A(R)}) = E (0, [l(R) —MR) Gk SR) ]) ~E(0, {MR)])
(k-R¥?/ 23E
- §*(R)—s“(m)' | )

By setting again A(K) = | in equation (9), the components of the inverse mass tensor
M-! of the exciton at k = 0 can be obtained from equation (9), and from the definition

M = (PPE(k)/0k:dk;) -

Finally, one finds that

o 8E \®Itk-RP] .
My = (1/8)2((%@) T T (1/4);&&,1{3 10y

with Kp = dE/3A(R). But according to the Hellmann-Feynman theorem, since A(R) is
a real parameter, one then has

Kp = (0H /0A(F))r=0

where the expectation value is to be calculated with the eigenstates of H.
Thus,

Kr= V(R)(e“""°'R + e"'"""R) 5
is a ‘kinetic energy’ associated{ to the lattice vector R; and the total ‘internal’ kinetic
energy K of the exciton is

K ={Ec(ke) + Ex(kn)ly = 2 _ K 2 0.

It is a simple matter to show that equation (10) reduces to equation (1) for the cubic
structures considered in previous works [1-3), when m, = my, in equation (1) and only
nearest-neighbour ‘hops’ are considered in equation (10). Furthermore, one expects that for
the strongly bound Frenkel-type excitons, where localization is maximum [3], Kz = 0 if
R #0 (ie. K = Ko = 2V(0)) and the exciton mass tensor diverges in eguation (10). For
the loosely bound and highly delocalized Mott—Wannier excitons one will expect, on the

t This is a natural identification, since the displacement operators exp(:£A - R) generate finite “hops’ of lattice
vectors + R,



1.226 Letter to the Editor

contrary, that K 2 2V(R) (i.e. (™R} = (e*hwB) ~ 1) and, thus, M;}' = (1/2)(m; ")y,
where

(my")y =— 2 RRV(R)
R

is the {jth component of the inverse mass tensor of the hole (or the electron). Thus, in both
extreme cases one finds expected resultsy.

In summary, 1 have generalized in a very simpie manner the Mattis~Gallinar effect
[1,6,8], for the first time, to the tensorial case of a non-cubic crystal, and this for quite
general, albeit similar, band structures for the electron and the hole. In the future, one would
like to extend equation (10) to the case of different electron and hole masses (m. 7 my),
and to a more realistic muitiband dispersion law.

It is with pleasure that I thank D C Mattis for warm hospitality at the University of Utah
(Department of Physics), during a second sabbatical stay there. The support of this research
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1 In the Mott-Wannier case or continuum limit, one expects

K~23 vi~o0.
R

In agreement then with equation (2°); since for &, = 0, Ey(0) = K /2 = 0, as comesponrds to a *free-like'
dispersion law.



