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LETTER TO THE EDITOR 

Crystal structure effects upon the mass of an exciton 

J-P Gallinar 
LkpartMlento de Fisica. Universidad Sim6n Bolivar, Apan;do 89WO. Caracas 1080A. 
Venezuela 

Received 11 January 1993 

Abstract. The Marris-Galliw effect predicts that the scalar mass of an exciton depends upon 
its i n l e d  kinetic energy. and that the exciton mass may be larger than the sum of the masses 
of the elecmn and the hole. I generalize this effect to the tenensorial case of a crystal shuchue 
which is not necessarily cubic. By assuming lhat the elecmn and hole share the same band 
shucture. I find that 

h f ~ ' = - ( 1 / 4 ) ~ R j R j K ~  
R 

where K R  r e p e n t $  an internal excitonic kinetic energy associated U) the vezLor R of the 
nystal lattice. and M i '  is the ijth component of the inverse mass tensor of the exciton. Thus. 
if the exciton becomes localized in the sense that Kn -, 0. the mass m o r  M may become 
arbiuarily large. 

According to the Mattis-Gallinar effect the scalar effective mass M of an exciton in a cubic 
crystal is given by 11-51 

M = (me + mh)/(l - (K/W)) (1) 

where m, + mh is the sum of the masses of the electron and hole, K the internal kinetic 
energy of the exciton and W the average of the electron and hole bandwidths. 

Experimental verification of formula (1) was given by Cafolla, Schnatterly and Tarrio 
161 from transmission electron-energy-loss measurements, for the cubic semiconductors NaF 
and CuCI, and more recently 171 for solid (cubic) krypton. 

Although well established [6-81 for cubic crystals, the result? embodied in equation (I) 
has not been generalized to other lattice structures [SI. It is the purpose of this contribution 
to do so. 

Thus, in the following, I will show that equation ( I )  can be extended in a non-trivial- 
yet very simple-manner to non-cubic smctures, provided one makes the simplifying 
assumption that the electron and hole share the same band structure$. 

In effect, consider the reasonably general [3] lattice excitonic Hamiltonian H, consisting 
of kinetic energy for the electron and the hole, plus potential attractive energy V(R). of the 
form [31 

H = &(-if&) f Eh(-i%) i- v(% - %) 

t Namely a theoretical interpolation b e e n  the extreme oses of the Mon-Wder and the Frenkel-typ excitons. 
$ The hand shucture k ing  otherwise quite general. and not necessarily reshickd to nearest-mdghbour 'hops' as 
for equation (I). 
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with the kinetic energy 

R 

for the electron of wavevector he = -iAe; and kinetic energy 

for the hole having wavevector kh = -iAb. Associated to the lattice vector R, C(R) and 
V(R) represent the 'hopping' mabix elements for the elecvon and hole, respectively. 

The two-particle state of the exciton I@) can be written as [21 

where the I&, &,) denotes the orthonormal basis states in which the elecmn is localized at 
lattice site &, and the hole at site &. and @(a. &) is the corresponding wavefunction. 

By making the centre-of-mass transformation, one writes [2] 

(Re - 4 (4) i(k/ZM%+Rd F $(&, &) =e-  

where IC is the wavevector of the centre of mass of the exciton, and F(R, - &) is some 
function of the relative coordinate R, - &, only. Substitution of equations (3) and (4) into 
the eigenvalue equation of the exciton 

HI$) = EIS) (5 )  

leads, after some manipulations, to the following difference equation for the function 
F(& - &,) = F(r); namely 

~ (e i ' k /2 ) ' nC( -R)  + e-iIkjZ)'RV(R)) F ( r  + R) = (E(k - V(r))F(r). (6) 

To make further progress, I will now assume that the electron and hole share the Same 
band smcture, in the sense that C ( - R )  = V(R) in equation (6). or, equivalently, that 
E.(?&) = Eh(-?&) in equation (2). With this simplifying assumption, equation (6) becomes 

From equation (7) one can now follow a line of reasoning similar (but somewhat simpler) 
to that used in previous references 11-31 to obtain the effective mass of the exciton. 

In effect, introducing 'coupling' real parameters A(R), such that each V ( R )  is 
renormalized to A(R)V(R), the energy eigenvalue E(h) of the exciton, considered as a 
function of the 1(R) parameters, will obey an obvious scaling relationship that follows 
from equation (7), namely. 

E ( k  ~ ( R I ) ,  ~ ( R z ) ,  . . .) = E @ ,  ~ ( R I ) ,  ~ ( R Z ) ,  . . .> (8) 
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provided the renormalised L(R) are given by 

i (R)  = A(R) cos(k - R/2). 

Then it is a simple matter to obtain the exciton mass by expanding the right-hand side of 
equation (8) in powers of k (up to k2). If (A(R)} denotes the set of the A(R)s, one has by 
Taylor’s expansion of all functions 

By setting again A(R) = 1 in equation (9). the components of the inverse mass tensor 
M-’ of the exciton at k = 0 can be obtained from equation (9), and from the definition 

(a2E(k)/akiakj)k_o. 

Finally, one finds that 

with KR 
a real parameter, one then has 

BE/aA(R). But according to the Hellmann-Feynman theorem. since A(R) is 

KR = (aH/aA(R))k=o 

where the expectation value is to be calculated with the eigenstates of H. 
Thus, 

KR = V(R)(e-Ac’R + e+Ab’R L O  
is a ‘kinetic energy’ associatedt to the lattice vector II; and the total ‘internal‘ kinetic 
energy K of the exciton is 

It is a simple matter to show that equation (10) reduces to equation ( I )  for the cubic 
structures considered in previous works [ 1-31. when m, = m,, in equation ( I )  and only 
nearest-neighbour ‘hops’ are considered in equation (IO). Fulthermore, one expects that for 
the strongly bound Frenkel-type excitons, where localization is maximum [3], KR = 0 if 
R # 0 (i.e. K = KO = 2V(O)) and the exciton mass tensor diverges in equation (IO). For 
the loosely bound and highly delocalized Mon-Wannier excitons one will expect, on the 

t This is a mural identification. since the displacement operators exp(5A. 11) generate finile ‘hops’ of lattice 
vectors *R 
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contrary, that K R  N 2V(R)  (i.e. 
where 

= (e+ikh'R} N I )  and, thus, M;' = (l/Z)(m;')i,, 

is the i jth component of the inverse mass tensor of the hole (or the electron). Thus, in both 
extreme cases one finds expected resultst. 

In summary, I have generalized in a very simpie manner the Mattis-GaJlinar effect 
[1,6,8], for the first time, to the tensorial case of a non-cubic crystal, and this for quite 
general, albeit similar, band stmctures for the electron and the hole. In the future, one would 
l ie to extend equation (IO) to the case of different electron and hole masses (m. # mh), 
and to a more realistic multiband dispersion law. 

It is with pleasure that I thank D C Mattis for warm hospitality at the University of Utah 
(Department of Physics), during a second sabbatical stay there. The support of this research 
by C0I"s  SPI scholarship No 0244 is also gratefully acknowledged. 
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t In the Mott-WaMier case or continuum limit, one e x m  

K .-. Z c V ( R )  -0. 
R 

In agreement then 
dispersion law. 

with quation (2'): m a  'free-like' 


